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multi-channel Kondo impurities 
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Kosygina St 2, Moscow V-334, USSR 
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Abstract. In the framework of conformal field theory I calculate the dynamical magnetic 
susceptibility and electronic self-energy component at low temperatures and energies TK 
(the Kondo temperature) for the N-channel magnetic impurities with S < N/2 (S is an 
impurity spin). The scaling dimensions of electrical resistivity, Hall resistivity and decreasing 
of superconducting temperature are also calculated. 

1. Introduction 

In 1980 Nozibres and Blandin predicted the existence of the Kondo effect with a scaling 
low-temperature behaviour of physical properties. Such an effect should occur when the 
number of scattering channels, N ,  of the conduction electrons exceeds 2S (S is the 
impurity spin). The exact solution of the corresponding model, called the multi-channel 
Kondo model, was obtained some years later (Wiegmann and Tsvelick 1984, Tsvelick 
1985). 

The Hamiltonian of the multi-channel model is 
b *. P l i  

H = &kC,&"kmo -k C ~ m o a % ' C p m u ' S a  (1) 
k , m , o  p ,  k ,  m ,  u, o' 

where m = 1, . . . , N ,  0 = k f, ua (a = 1,2,3)  are the Pauli matrices, CZmu, Ckmu are 
the creation and annihilation operators of the conduction electrons, S" are the impurity 
spin operators. I consider the case where N > 2s. 

Now there is clear experimental evidence of a low-temperature scaling for magnetic 
impurities of vanadium in gold (Geens et ai 1987). 

A vanadium impurity ion in a strong cubic crystal field has a zero total angular 
moment and spin S = $. From comparison of the experimental data with theoretical 
predictions, Geens and co-workers have deduced that the number of scattering channels 
in AuV alloy is N = 5. 

There are some other candidates for the non-Fermi-liquid low-temperature behav- 
iour: U impurities in (U, Th) Bel3 alloy; Tb impurities in TbTh alloy. For these systems 
the theory predicts N = 2, S = t (Cox 1987,1988). In addition to the scaling behaviour, 
these alloys are likely to exhibit a new type of Kondo effect (Cox 1987,1988). The point 
is that in these alloys where] = 4, by Hund's rule, a ground-state multiplet of an impurity 
ion may be split in the cubic crystal field so that the non-magnetic r3 doublet lies the 
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lowest, This level has a net electric quadrupole moment but no magnetic dipole moment. 
The r3 doublet is described by the wavefunctions 

Y 1/2 = 0.54( 14) + 1-4)) - 0.65 10) 

Y -112 = 0.71(12) + 1-2)) 

where l j )  = IJj) is an eigenfunction of J 2  and J' operators with J = 4 and its z projection 

The r3 doublet interacts with the following partial waves of the conduction electrons: 
j .  

Ira, -2) = 0.91 1-5) + 0.41 18) - ] PI. Ir,, -1) = I-$) 
The scattering processes change only the states belonging to the same group ([8] or 

[SI), so these states form a representation of the pseudo-spin 4. 
The most remarkable property of the quadrupole Kondo effect is that the Ham- 

iltonian (1) in this case is a time reversal. Now the conserved index m corresponds to 
real spin and oa, and so the So become pseudo-spin operators that act in the space of 
crystal-field eigenstates with the same spin projection. Therefore, for example, the 
application of an unaxial strain would produce the same effect as the Zeeman term for 
the normal Kondo impurity. 

Another physically realisable example of the application of the model (1) has been 
proposed by Vladar and Zawadowski (1983) and Muramatsu et a1 (1986). According to 
theseauthors, themodel(l), withN = 2,s = 1, describesthescatteringoftheconduction 
electrons on the two-level systems in metallic glasses. 

As has been mentioned above, in the model ( l ) ,  low-temperature scaling takes place. 
This means that the renormalisation group trajectory of this model has a stable fixed 
point at finite coupling constant. Any theory for such a fixed point possesses the property 
of conformal invariance. But it is well known that impurity models are effectively one- 
dimensional and in this case the conformal symmetry is extreme. Recently it has been 
shown (Belavin et a1 1984) that the conformal invariance puts such strong restrictions on 
the Green functions of one-dimensional theories that it becomes possible to calculate 
them. 

In the present paper I use the conformal field theory to calculate the dynamical and 
transport properties of the multi-channel Kondo model (1). 

2. The operator content of the multi-channel Kondo model 

In this section I briefly discuss some general properties of conformal theories. 
Until now all results have been obtained for homogeneous models. Therefore, I shall 

begin the discussion with such models. Below I shall explain why one can use the 
conformal theory for the inhomogeneous model (1). 

The simplest definition of the 1 + l-dimensional conformal theory may be given as 
follows. It is a theory with linear spectrum E = ? u p  whose operators are expressed in 
terms of free bosonic fields. This representation may be simple-then one can use it to 
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calculate the Green functions-or it may be very complicated-then it is better to resort 
to a more formal procedure, elaborated in the framework of conformal group theory. 

The elementary excitations in conformal theories are waves travelling to the left and 
to the right. The waves travelling to the left do not interact with those travelling to the 
right; therefore the correlation functions depend on the coordinates z = ut - x and 2 = 
ut + x taken separately. Thus, the Green functions realise the representation of the two 
conformal groups: the group of analytical ( z )  and the group of anti-analytical (2)  
transformations. In principle one may ignore the fact that z and Tare complex conjugates 
and consider them as independent variables. This property of general conformal theory 
makes it applicable to models with one impurity. In this case the impurity Green 
functions depend on time, t ,  only, and the conformal group is the group of analytical 
transformations of t. 

In order to calculate the Green functions, one needs to know a representation of the 
conformal theory which they realise. The first step in finding this representation is finding 
the so-called ‘central charge’, C, of the theory. This quantity determines the universality 
class of the theory. 

The central charge has a rather transparent physical meaning: it represents an 
effective number of degrees of freedom of the theory. It followsfrom the formula derived 
by Cardy (1986) which relates the heat capacity of 1 + l-dimensional conformal theory 
to its central charge C: 

C O I L  = Q n T C  (2) 

( L  is a length of the system; I used U = 1). 
When Cis an integer it is clear that there are C kinds of boson in our theory. In order 

to obtain a theory with non-integral C one should put some restrictions on the theory 
with integral C. These restrictions must agree with conformal invariance. They lead to 
some eigenstates of the previous theory with integral C being forbidden. 

The value of central charge for our model may be extracted from my previous paper 
(Tsvelick 1985). It is equal to 

c = 3N/(N + 2). ( 3 )  

Here 1 should give some explanation. It is obvious that in the absence of the impurity 
the model (1) is also conformal and its central charge is C = 2N.  Why is it not equal to 
this in the presence of the impurity? The point is that there are a definite proportion of 
the degrees of freedom that do not interact with the impurity. This fact is clearly revealed 
by the Bethe ansatz solution (the decoupled parts of the excitations are called ‘charge’ 
excitations in the earlier paper (Tsvelick 1985)). To calculate the central charge one 
should calculate the heat capacity of those parts of the host which couple with the 
impurity. 

In the earlier paper (Tsvelick 1985) I found another quantity-the impurity heat 
capacity at N = 2 s  (see formulae (8), (49) in this paper). But the heat capacity of the 
host Ghost may be easily restored through the Fermi liquid relation 

Ch’Jst/L = C i m P  T K/2 

(TK is the Kondo temperature), which holds in this case. As a result one obtains Ghost 
given by the formula (2) with C given by ( 3 ) .  

The central charge ( 3 )  is just the central charge of a model well known in field theory, 
the Wess-Zumino-Novikov-Witten (WZNW) model on the SU(2) group. The WZNW 
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model has been solved in the framework of the conformal theory by Knizhnik and 
Zamolodchikov (1984). The model (1) belongs to its universality class. 

In order to calculate the correlation functions of some physical operators of interest 
to us, we need to know the position of these operators in the general operator content 
of the theory. Therefore, I shall describe the operator content of the WZNW model. 

Firstly, there are a number of so-called primary fields that transform in the simplest 
way under conformal group transformations. The calculation of their scaling dimensions 
is the main task of the theory. For the WZNW model on the SU(2) group it is known that 
these fields @(t) realise the 2jth symmetrical representation of the SU(2) group and 
their scaling dimensions are (Knizhnik and Zamolodchikov 1984) 

A(’) = j ( j  + l)/(N + 2) j = ’  2 ,  1 , 2, . . ., !&” (4) 
Secondly, there is a set of operators (‘descendants’) for each primary field. They 

have scaling dimensions 

(n  is an integer). ( 5 )  A(n.i) = A(n) + n 

The state with a given n is strongly degenerate. 
Let us try to identify some operators of our model with enumerated conformal fields. 
From the thermodynamics of the multi-channel Kondo model we know the scaling 

dimension of the magnetic field: AH = N/(N + 2) (Tsvelick 1985). Therefore, the dimen- 
sion of the spin operator is As = 1 - AH = 2/(N + 2). It corresponds to the primary field 

It is rather obvious that spin cannot be a pure primary field. For example, from the 
formula for the magnetic susceptibility (Tsvelick 1985) 

we see that the spin field consists of the q(’) primary field and its descendants with scaling 
dimensions = A(1) + m. But I shall neglect the contribution of the descendants in 
the leading order in ( T / T K )  1. 

The spin operators may be represented as 

where d z ,  d, are Fermi operators. Therefore, it is reasonable to suggest that the 
fermionic impurity field is transformed according to the fundamental representation of 
the SU(2) group. Thus, its scaling dimension is equal to 

A(1/2)  = $(N + 2). (8) 
It is convenient to use for Green functions of the WZNW model on an SU(2) group the 
representation introduced by Zamolodchikov and Fateev (1986) : 

I 

q ( ’ ) ( y ,  t )  = ~ ~ ) ( t ) [ C ~ + ’ ] - ’ / 2 y ( m + ’ )  C i  = n!/k!(n  - k ) ! .  (9) 
m = - 1  

Below I use the two- and three-point correlation functions; they are calculated in the 
same way: 

( @ ( ’ l ) ( Y l ,  t l ) @ ( ’ Z ) ( Y 2 ,  t2)) = ~11 .12(Y12)2 ’1 ( t12 ) -2A( ’1 )  (loa) 
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x ( y 1 2 ) i ~ + i z - i 3 ( y 1 3 ) j l + i 3 - i z ( y 2 3 ) 1 2 + j 3 - i l ( t 1 2 ) A ~ - A 1 - A ~  

(lob) X ( t13 ) 'Z-' 1 -A3(t23) * 1 - A  Z-' 3 

where C(j17 j2,j3) is a known structure constant. 
The formulae (10) give the correlation functions on the infinite plane of the complex 

variable t. I need the temperature Green functions; therefore I rewrite these formulae 
for the infinite strip of width 1/T. The appropriate relation for the two-point correlation 
function is (Belavin et a1 1984): 

GT(tl> t2) = GO(W(tl), W(t2))(d w(tl)/dt1)A(dW(t2)/dt2)A (11) 

where w(t) = exp(2ntT) is the conformal transformation from the strip to the plane. 
The generalisation of this formula for the case of multi-point correlators is obvious. 

From (loa) and (11) it follows that 

(@(jl)(yl tl)@(j2)(y2, t2))T = djljl(y12)2jl(n~/sin n ~ t ~ ~ ) ~ ' ( ' l )  (12) 

3. The calculation of the Green functions 

In the leading order in T/T,  it is easy to identify the dynamical magnetic susceptibility: 

x(ti t 2 )  = A[~(t12>(@.' , ' ' ( t i )@~~(tz))  + e ( t z i ) ( @ ~ ~ ( t 2 ) @ ~ ~ ( t l ) ) ]  (13) 
where A is some constant. 

From formulae (9) and (loa) one sees that 

(@y(t2)@y(t1))  = (@y(t*)@!;(tJ). (14) 
Then it is easy to obtain, using (12), the Fourier transformation of the Green function 
(13): 

(here I use the formula (6) to extract the numerical factor ao). 
The retarded magnetic susceptibility is an analytic function of w :  

(NZ2). 
co~h(o/2T)I'~(N/N + 2) 
Ir(N/N+2) + i o / 2 ? ~ T ) / ~  TX~(O, T )  = 

The Green function Gd of the q(ll2) fields enters into the expression for the self-energy 
part of conduction electrons &: 

Ze(w,)  = Cimpp-'(G;'(wn) + insgn U")-' (18) 

(CimP is the impurity concentration). 

of conduction electrons is 
Formula (18) needs some comments. For the singular impurity the Green function 

G(w; r ,  r f )  = Go(@; r - r f )  + Go(w; r )  X:,(w)Go(w; r')  (19) 
(the impurity is located at the point R = 0). 
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In the diagrammatic representation of 2, there are diagrams that can and cannot 
be cut over the free electron propagator G(w,, 0) = -inp sgn w,. If we designate by 
p-’Gd the part of 2, which cannot be cut, then we get from (19) the formula (18) (with 
Cimp = 1). The right-hand coefficient Cirlp arises after averaging over impurities. 

My point is that in the leading order in ( T/TK) one has 

It is a fermionic Green function and therefore it is equal to 

where w ,  = 2nT(n+ 1/2). 

imaginary part of the retarded self-energy: 

l / t (w) = -2 Im 2 F ( w )  = 2Cimpp-’[l - l/(nbo)2(T/TK)(2N+1)’(Nt2) 

Following the standard procedure I obtain from (18), (21) the expression for the 

x Ir(1 - Q(N + 2) + iw/2nT)l2 c o ~ h - ~ ( o / 2 T ) ] .  (22) 

At last I calculate the function 

a Gd ( t ,  H)/d HI H = 0 = BA 1’2 d t ((Q, ip) ( t )  Q, e($ (0) Cp 6’) (t))}. (23) 

Using the formulae (lob) I obtain, after cumbersome algebra, the following 
expressions: 

aGd(O,, H)/aH = D d t  sin(w,,t/nT) COS t (sin t)’12”’’2) 

X F( l  - A(’)/2, 1 - A(’)/2,$, cos2 ~ ) ( T / T K ) ( ~ ~ “ ’ * ) ~ ~ ~ ’ ) - ~ )  

cos nA(’)/2 T ( N / N  + 2)BA”2C(a, i, 1) (24) D = 21 + 2A(1) 

) lI2. 
T ( 1 / ( N  + 2))r2(N/(N + 2)) r (3  ( N  + 2)) 

4. The calculation of the transport properties 

In this section I apply the formulae for the Green functions obtained in the previous 
sections to calculate the impurity contribution to electrical resistivity, Hall resistivity 
and the depression of the superconducting transition temperature. 
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According to Fulde and Peschel (1972) the electrical conductivity is given by the 
formula 

where n(E) = [exp(E/T) +1]-' and t(&) is given by formula (22). 
From (22) and (25) I obtain 

a (T)  = a(o)( l  -t p(T/TK)(2N+1)/(N+2) + .  . , 

/3 = (2/j~nb,,)~ 
+ X  

dx c o ~ h - ~ x  (r(1 - f ( N  + 2)  + ix/n)I2 

where a(0) is the conductivity in the unitarity limit. 
Levy et a1 (1988) derived the following formula for the Hall resistivity: 

36Cimpg2 sin q 2  
49e2hH 

RH = p,/H = - 

P,(E) = -1m 2 z:(E).  
U 

Hereg is a matrix element of the hybridisation, pO(&) is a density of states of the band 
electrons, VF(&) is the Fermi velocity, v 2  is a scattering phase of the potential scattering. 

From (22), (24) and (27) I obtain at H+ 0 

The Hall coefficient per impurity is enormous compared to its value in the host: 

RH/ClmpRhHOSf - E,/TK. 

It is also interesting to consider the influence of the magnetic impurities on a super- 
conducting transition. Using the well known formula for the reduction of the critical 
temperature T,, I obtain: 

I am not writing down the explicit expression for r because it is very complicated 
and the integral (29) cannot be calculated analytically. Instead, I calculate the scaling 
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dimension of d In Tc/dCimp. From the paper by Zamolodchikov and Fateev (1986) it is 
known that 

f(Tr127 Tt13, Tt14). (30) 

(31) 

(T/T~)[~A(~/~)+ZA(~)]  
r1234 = 

Substituting (30) into (29) I obtain the estimate 
In Tc/dCimp - -(T,/TK)[-3+4A('/2)+2A(')l = - (T  K c  /T)(3N-l)/(N+2). 

5. Conclusion 

Here I briefly discuss the results. I calculate the dynamical susceptibility (16), (17), the 
scattering rate (22), the electrical conductivity U (26), the Hall resistivity RH (28) and 
the depression of the temperature of superconducting transition (3). The corresponding 
scaling dimensions are 

A,=(2N+ l) / (N+ 2) ARH=(2N- l)/(N+ 2) ATC=(3N- 1)/(N+2). 

To calculate them I need only scaling dimensions of the two operators-A('i2) and A(1), 
All the complicated apparatus of the conformal field theory has been required for 
another task-to obtain the susceptibility and the scattering rate as functions of (o /T)  
in the crossover region. Therefore, the experimental observation of this dependence 
seems to me a very important test for the applicability of the conformal field theory to 
models with magnetic impurities. 
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